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Simple 2D models of walking often approximate the human body to multi-link dynamic systems, where
body segments are represented by rigid links connected by frictionless hinge joints. Performing forward
dynamics on the equations of motion (EOM) of these systems can be used to simulate their movement.
However, deriving these equations can be time consuming. Using Lagrangian mechanics, a generalised
formulation for the EOM of n-link open-loop chains is derived. This can be used for single support walking
models. This has an advantage over Newton–Euler mechanics in that it is independent of coordinate sys-
tem and prior knowledge of the ground reaction force (GRF) is not required. Alternative strategies, such as
optimisation algorithms, can be used to estimate joint activation and simulate motion. The application of
Lagrange multipliers, to enforce motion constraints, is used to adapt this general formulation for appli-
cation to closed-loop chains. This can be used for double support walking models. Finally, inverse dynam-
ics are used to calculate the GRF for these general n-link chains. The necessary constraint forces to
maintain a closed-loop chain, calculated from the Lagrange multipliers, are one solution to the indeter-
minate problem of GRF distribution in double support models. An example of this method’s application is
given, whereby an optimiser estimates the joint moments by tracking kinematic data.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

There are numerous examples of researchers using relatively
simple dynamic models to investigate the way in which human
beings walk (Baker et al., 2004; Buczek et al., 2006; Kuo, 2007;
McGrath et al., 2015b; Millard et al., 2011). Some have further
expanded to models of ‘moderate’ complexity (Martin and
Schmiedeler, 2014; McGrath et al., 2015a; Pandy and Berme,
1988a, 1988b). Often these latter models consist of a number of
rigid links connected by frictionless hinge joints, forming a chain.
These represent the segments and joints of a person’s limbs. In
order for these models to provide forward dynamic simulations
of a person’s movement, their equations of motion (EOM) must
be derived.

General formulae for the EOM of n-link chains have been previ-
ously developed for use in gait modelling, using a Newtonian
approach (Pandy and Berme, 1988a). A great advantage of these
general formulae is the time saved in developing the EOM for mod-
els with a large number of degrees-of-freedom (DOFs), where a
manual approach is very time consuming. This paper describes a
similar approach but using Lagrangian mechanics to develop the
formulae instead, which are independent of the chosen coordinate
frame. Also, because they use energy calculations, rather than
forces, prior knowledge of the ground reaction force (GRF) is not
required.

Once these equations are developed, walking simulations can
be performed using the same methods as the complex models,
such as using optimisation to estimate internal kinetics and joint
activations (Anderson and Pandy, 2003). This study gives an exam-
ple of such a simulation.
2. Method

2.1. Open-loop chains

The Lagrange equation to derive EOM for an open-loop chain is given (Onyshko
and Winter, 1980).

d
dt

@L
@ _qi

� �
� @L
@qi

¼ 0 ð1Þ

where L is the Lagrangian function – the difference between the kinetic and potential
energy – and qi are the generalised coordinates for the ith link of the chain.
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Eq. (1) shows the Lagrange equation equal to zero. This is valid when there are
no external forces or moments acting on the system. For the derivations outlined
here, moments will be acting at the joints between links so the Lagrange equation
is adapted.

d
dt

@L
@ _qi

� �
� @L
@qi

¼ Qi ð2Þ

where Qi are the generalised forces derived from a consideration of virtual work
(dw):

dw ¼
X
i

Q idqi ð3Þ

Two choices for qi are joint angle (ui) or link angle (hi) to the vertical.

dw ¼
X
i

�Midui ¼
X
i

Miðhi�1 � hiÞ ¼
X
i

ðMiþ1 �MiÞhi ð4Þ

where Mi is the moment acting at the distal joint of the ith link of the chain. This
means Qi is equal to �Mi if joint angles are used or Mi+1 �Mi if the link angles to
the vertical are used. Although selecting the joint angles would decouple the gener-
alised force terms, it makes the functions for the energy calculations more complex.
Consequently, link angles to the vertical are preferable and are used throughout this
paper.

The following derivation is for an open-loop chain consisting of n rigid links,
where the ground acts as a workless constraint at one end of the chain and the other
end is free. Each link has the characteristics shown in Fig. 1. The angular position of
the ith link is defined as the link’s angle to the vertical. Anticlockwise is positive for
angles and moments. The total length of the link is li. It has a mass, mi, acting at a
single point, with a moment of inertia, Ii. The position of the centre-of-mass (CM) of
the link is defined by two values, di and ei, where di is parallel to the length of the
link and ei is perpendicular to it. The direction of progression is in the positive x
direction and upwards is the positive y direction. The acceleration due to gravity
is written as g.

Assumptions are made for these generalised formulae to be valid. There is no
branching and each link is connected to adjacent links by frictionless hinge joints.
The model is 2D, in the sagittal plane, and the hinge joints are the only DOFs. For
each link, there are two controlled muscle moments acting on the proximal and dis-
tal ends, respectively.

Firstly, the coordinates of the CMs of each segment are considered:

xi ¼
Xi�1

h¼1

ð�lh sin hhÞ � di sin hi þ ei cos hi ð5Þ

yi ¼
Xi�1

h¼1

ðlh cos hhÞ þ di cos hi þ ei sin hi ð6Þ

The linear velocities of these CMs are defined by the first derivatives.

_xi ¼
Xi�1

h¼1

ð�lh cos hh _hhÞ � di cos hi _hi � ei sin hi _hi ð7Þ

_yi ¼
Xi�1

h¼1

ð�lh sin hh _hhÞ � di sin hi _hi þ ei cos hi _hi ð8Þ

The resultant velocities are calculated for each CM.
Fig. 1. The notation for describing eac
v2
i ¼ _x2i þ _y2i ð9Þ

The kinetic energy, T, and the potential energy, V, of the system are calculated.

T ¼ 1
2
mv2 þ 1

2
Ix2 ¼

Xn
i¼1

1
2
miv2

i þ
1
2
Ii _h2i

� �
ð10Þ
V ¼ mgh ¼
Xn
i¼1

mi

Xi�1

h¼1

ðlhg cos hhÞ þ dig cos hi þ eig sin hi

 ! !
ð11Þ

The Lagrangian function is calculated by subtracting the potential energy from
the kinetic.

L ¼ T � V ð12Þ

Partial differentials of L with respect to _hi and hi are taken to evaluate the terms
in the Lagrangian equation.

d
dt

@L

@ _hi

� �
� @L
@hi

¼
X
i

ðMiþ1 �MiÞhi ð13Þ

From the calculation of these terms, the EOM can be written in matrix form.

B � €h ¼ C where;

b1;1 � � � b1;n

..

. . .
. ..

.

bn;1 . . . bn;n

2
664

3
775

€h1

..

.

€hn

2
664

3
775 ¼

c1

..

.

cn

2
664

3
775 ð14Þ

For a given row, p, and a given column, q:

bp;q ¼

mpd
2
p þmpe2p þ

Xn
j¼p

mjþ1

 !
l2p þ Ip

 !
if p ¼ q

mpdp þ
Xn
j¼p

mjþ1

 !
lp

 !
lq cosðhq � hpÞ

 !
þ mpeplq sinðhp � hqÞ
� �

if p > q

mqdq þ
Xn
j¼q

mjþ1

 !
lq

 !
lp cosðhp � hqÞ

 !
þ mqeqlp sinðhq � hpÞ
� �

if q > p

8>>>>>>>>>>><
>>>>>>>>>>>:

ð15Þ
cp ¼
Xfnjp–hg

h¼1

_h2h

mpdp þ
Xn
j¼p

ðmjþ1Þlp
 !

lh sinðhh � hpÞ if h < p

� mhdh þ
Xn
j¼h

ðmjþ1Þlh
 !

lp sinðhp � hhÞ otherwise

8>>>>><
>>>>>:

0
BBBBB@

1
CCCCCA

0
BBBBB@

0
BBBBB@

þ ðmpeplhÞ cosðhp � hhÞ if h < p

�ðmhehlpÞ cosðhh � hpÞ otherwise

�� ���

þ mpdp þ
Xn
j¼p

mjþ1

 !
lp

 !
g sin hp �mpepg cos hp þMpþ1 �Mp

ð16Þ

The sigma notation
Pfnjp–hg

h¼1 means h covers all of the values from 1 to n, but is
never the same as p.
www.manaraa.com
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This method does, however, rely on an estimation of joint moments. Later in
this study, an optimisation algorithm is described, which uses measured kinematics
and estimates these moments. This means that Matrix B can then be inverted and

used to produce the vector €h, which gives the angular acceleration for each link
of the chain.

2.2. Closed-loop chains

Eq. (14) is only applicable for open-loop chains, i.e. single support walking mod-
els. To create double support models, closed-loop chains are required. An advantage
of Lagrange mechanics is that constraints can be applied relatively simply using
‘Lagrange multipliers’.

To apply a constraint, the jth constraint function (fj) is defined such that:

f j ¼ 0 ð17Þ

The governing Lagrange equation is modified to include the Lagrange
multipliers:

d
dt

@L
@ _qi

� �
� @L
@qi

�
X
j

kj
@f j
@qi

� �
¼ Qi ð18Þ

where kj is the Lagrange multiplier for the jth constraint. For a number of constraint
equations, r, the same number of new unknown variables need to be solved. This is
done by incorporating the constraint equations into the matrix formulation of the
EOM, thus solving for €qi and kj simultaneously. If the constraint equations are purely
positional (only contain qi terms), they need to be differentiated twice so that they
contain €qi terms. This new equation then needs to be separated into two functions;
one that contains only the €qi terms, gj, and one that contains the rest of the terms hj
(Eq. (19)). These terms can now be incorporated into the matrix formulation (Eq.
(20)).

d2f j
dt2

ð€qi; _qi; qi; tÞ ¼ gjð€qi; tÞ þ hjð _qi; qi; tÞ ¼ 0 ð19Þ

bi;i � @f j
@qi

gj ð€qi ;tÞ
€qi

0

2
4

3
5 €qi

kj

� �
¼ ci

�hjð _qi; qi; tÞ
� �

ð20Þ

It’s important to note that the €qi terms are no longer all independent. For a chain
with n DOFs and r constraint equations, only n-r are independent. If the initial con-
ditions satisfy the constraints, then computing €qi and integrating to solve for all
DOFs should produce solutions which are consistent with the constraint equations.
These can be validated using the constraint equations (Ülker, 2010). If €qi is known
for the first n-r links in the chain, the constraint equations can be used to compute
€qi for the final r links. A worked example is given in the appendix.

2.3. Ground reaction force calculations

Inverse dynamics can be used to calculate the total GRF acting on a walking
model. For open-loop chains, this is the GRF where the chain is in contact with
the ground (the single supporting foot). For closed-loop chains, a method is
required to determine how the total GRF is distributed between the two ground
contact points, which is an indeterminate problem. The following derivation is for
the vertical and horizontal components of the total GRF.

By considering the vertical direction first, Newton’s second law of motion is
used:

GRFy �mg ¼
Xn
i¼1

mi€yi ð21Þ

Differentiating Eq. (8):

€yi ¼
Xi�1

h¼1

lh �€hh sin hh � _h2h cos hh
	 


þ di �€hi sin hi � _h2i cos hi
	 


þ ei €hi cos hi � _h2i sin hi
	 


ð22Þ

Similarly, for the horizontal direction:

GRFx ¼ ma ¼
Xn
i¼1

mi€xi ð23Þ

Differentiating Eq. (7):

€xi¼
Xi�1

h¼1

lh �€hhcoshhþ _h2h sinhh
	 


þdi �€hicoshiþ _h2i sinhi
	 


þei �€hi sinhi� _h2i coshi
	 


ð24Þ
During double support, although the total GRF can be calculated, there is an infi-
nite number of ways this can be distributed between the two feet. Ren et al. (2007),
solved this problem by making a smooth transition assumption. The Lagrange mul-
tipliers method used here offers an alternative approach because the multipliers
can be used to calculate the force required to maintain a given constraint. In the
case of this study, the forces required to hold the trailing foot fixed to the ground
can be used to calculate the GRF under that foot. By using inverse dynamics, in
the same way as before, to calculate the total GRF, a simple subtraction can be used
to obtain the GRF under the leading foot.

Since the constraint forces are acting upon the trailing foot and it is stationary,
it can be assumed that the GRF components beneath it are equal to these constraint
forces. The forces the constraints produce can be expressed:

Fqi ¼ k
@f
@qi

ð25Þ

To calculate the constraint forces in the x and y directions, the following equa-
tions are used:

Fx ¼ kf 1
Xn
i¼1

@f 1
@hi

@hi
@x

� �
¼ kf 1

Xn
i¼1

�li cos hi � 1
�li cos hi

� �
¼ kf 1 ð26Þ

Fy ¼ kf 2
Xn
i¼1

@f 2
@hi

@hi
@y

� �
¼ kf 2

Xn
i¼1

�li sin hi � 1
�li sin hi

� �
¼ kf 2 ð27Þ

These values relate to the GRF components at the trailing foot. Subtracting these
from their respective total GRF components give the GRF components beneath the
leading foot.

3. Example simulation

Gait laboratory data was collected for a single, healthy, female
participant (28 years old, 65 kg, 162 cm). Ethical approval for the
study was granted by the Institutional Ethics Panel (ref
HSCR13/18). A Vicon 3D motion capture system (Oxford Metrics
plc., Oxford, UK) and Kistler force plates (Kistler Group, Win-
terthur, Switzerland) were used to capture kinematic and kinetic
data, respectively.

The derived generalised formulae were used to generate a seven
degree-of-freedom model (previously described by McGrath et al.
(2015a)). For the simulation model, the participants anthropomet-
ric data were used and segment masses were estimated usingWin-
ter’s formulae (Winter, 1979, 1991).

The simulation was split into two: a single support (open chain)
and a double support (closed chain). For both double and single
support simulations, a global optimisation was performed using
the MATLAB function ‘GlobalSearch’ (Ugray et al., 2007). The input
parameters were the initial kinematic state (segment angular posi-
tions and velocities) and the joint moments over the whole simu-
lation. The initial kinematic state was known from the gait lab
measurements but since the temporal profiles of the joint
moments were unknown, the initial estimate was taken from Win-
ter’s data (Winter, 1979, 1991). The cost function was the root
mean square difference of the predicted kinematics, to those mea-
sured in the gait lab. Consequently, the optimiser was designed to
‘track’ the motion.

The results of this simulation are illustrated in Fig. 2.

4. Discussion

A general formulation for the EOM of an open-link chain has
been derived and presented here, with the application of modelling
bipedal walking. Using Lagrangian mechanics to derive these for-
mulae has been shown to be independent of coordinate frames
and requires less prior kinetic knowledge than alternative
approaches, such as Newton–Euler mechanics. In terms of walking,
this means that the GRF does not need to be known or estimated to
perform forward dynamics calculations.

However, joint moments do need to be estimated. This can be
executed using an optimisation procedure, a similar method to
www.manaraa.com



Fig. 2. The results of the simulation when applied to measured data. The simulation kinematics are shown (solid stick figures) against the equivalent measured kinematics
(dotted stick figures). The black lines on the plots show the kinetic outputs of the simulation compared with the equivalent mean ± one standard deviation kinetics measured
in the gait lab (grey area). The moments shown are for those joints that were on the leading leg at the start of the gait cycle (blue on the stick figures). The ground reaction
force (GRF) components are shown in terms of percentage of bodyweight (% BW). The dotted vertical lines indicate transitions between double and single support. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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how Anderson and Pandy (2003) estimated muscle activations in a
more complex model with a higher number of degrees-of-freedom.
The advantage of simple models is that they allow a focus on the
fundamental issues of how the general form and function of the
musculoskeletal system affect gait biomechanics without having
to be concerned about whether solutions are affected by the pre-
cise choice of a number of largely unknown, and in many cases
unknowable, secondary parameters such as precise details of the
muscle anatomy and physiology. Less complex models will lead
to faster solutions within complex iterative optimisation
procedures.

The strength of forward dynamic models is their ability to per-
form ‘what-if’ simulations. For example, using the described model,
to simulate a person with lower knee strength, the knee moment
curve could be constrained to illustrate the effect on kinematics.
Alternatively, changing the joint angle curves (e.g. a fixed ankle
angle) would affect the optimisation process and, ultimately, the
moment predictions.
Another advantage of Lagrangian mechanics is that Lagrange
multipliers can be incorporated into the calculations to apply
constraints. This enables the modelling of a closed-loop chain,
which, in terms of walking, equates to the double support phase.
Additionally, it has been shown that these multipliers can be used
to estimate the distribution of the GRF when both feet are contact-
ing the floor; something that was previously an indeterminate
problem.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jbiomech.2017.
02.013.
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